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ABSTRACT

A modal approach is described for analysis of the junction between a coaxial line and a guiding structure having

conducting planes on upper and lower surfaces.

The expressions are verified by comparison with experimental

measurements for the special case of a rectangular waveguide.

INTRODUCTION

This paper sets out a technique for the analysis of the
junction between a coaxial line and a wave-guiding
structure. Its principal feature is that is applicable
to guiding structures of interest at millimeter-wave
frequencies, such as shielded image guide, H-guide and
groove guide, as well as to conventional rectangular
waveguide. It can also be applied to the case of a
microstrip in place of a coaxial line, if the assumpt-
ion of quasi-TEM mode propagation in the microstrip

is accurate. The principal restriction on the wave-
guide is that it has perfectly-conducting planes on its
upper and lower surfaces.

The basic elements of the analytical procedure are
presented in this paper. The approach is then applied
to the special case of the coaxial line and rectang-
ular waveguide junction, since experimental measure-
ments are readily available for this structure. Very

good agreement is obtained between the measurements
and theoretical values of impedance at the coaxial
aperture plane.

PREVIOUS WORK

Analysis has hitherto been confined to the special
case when the guiding structure is a rectangular
waveguide. The significant approaches have been:

(1) Lewin [1] replaced the coaxial line junction
by a S-function voltage and a coaxial line
characteristic impedance at the base of the
post across the waveguide. This approach

gave problems with convergence and the results

do not agree well with measurements.

(2) Eisenhart et af [2] replaced the coaxial line
by an equivalent gap in the post; this permits
use of waveguide cylindrical post mount

theory [3], [4]. The limitation here is that
the equivalent gap size is determined by an
empirical factor dependent on coaxial-line
dimensions and impedance.

(3) Williamson [5] applied image theory to this
problem, using the Love equivalence theorem

to model the coaxial aperture by a magnetic
surface current. His approach gives good
agreement with theoretical results. However
his method appears limited to rectangular
waveguide, and is not readily extended to other

forms of waveguide.

METHOD OF ANALYSIS

We consider the general junction shown in Fig. 1(a)
with a coaxial line intersecting a guiding structure.
The analysis developed here characterizes this
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junction by determining the junction impedance (as
seen from the coaxial aperture) and the current
distribution on the inner conductor of the coaxial
line.

The analysis commences with the assumption that the
radial electric field in the aperture of the coaxial-
line/waveguide intersection is a TEM mode component.
Using the Love equivalence principle, the fields E@,
H, in the waveguide arising from coaxial-line excitat-
ion are identical to those produced by an equivalent
magnetic current M flowing on the coaxial-line.
aperture surface Sa; as Harrington points out [6], this
surface may have a perfect conductor just behind M,
The magnetic current is given by:
_ M=nzx Ea (1)

where n is the unit normal to the aperture, and Ea
is the TEM-mode electric field in the aperture.
Hence we obtain:

1
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where V is the applied voltage, a and b are coaxial
line dimensions, and a cylindrical co-ordinate system
r, &, y is used.

(2)

We now consider the coaxial-line outer conductor to

be extended into the waveguide (the effect of these
fictitious coaxial-line walls in the waveguide will be
compensated for, see eqn.(4)). This extension creates
a coaxial cavity which is excited by the sourqg'ﬁ,

as shown in Fig. 1(b), giving TEM mode fields Eq, ﬁi and
a current I. flowing on the inner conductor surface Sl.
This curren% I, is readily found to be:

1. = - V j cos k(y-B) (3)
17 T2,  sin kB

where Z, is the characteristic impedance of the coaxial
line, B is the waveguide height, and k is the wave
number.

There will also be a current -I, flowing on the inner

surface 85 of the outer coaxial cavity shown in Fig.
1(b).

We must now remove the outer-conductor walls shown in
Fig. 1(b), to recover the original structure shown

in Fig. 1(a). This removal is readily accomplished by
use of a Schelkunoff field equivalence principle [7],
through which a current I, on 82 is used as a source
giving fields EZ’ Hy in tﬁe waveguide as shown in Fig.
1(c). Note that this current I, on S, induces a current
I, on the surface S,. The desired field E_, H of Fig.
}%a) is given by the superposition of Ei, Oﬁi and Eé
Hy. -

Ey,. the y-directed component of E, is readily found in
tefms of the currents Iy (on SZ) and I, (on Sl), if the
modes in the general waveguide by specified by their
field components Emn’ Hmn’,and corresponding propagation

1983 IEEE MTT-S DIGEST



constants [Ip,, through:
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where J_ represents the current density of Ij and I

and the’integrals are taken over S, and S, and the
waveguide cross-sections. If J_  were a delta function,
(4) would represent one component of the dyadic Green's
function for the general waveguide [7]. Note that (4)
includes the current I, which has not yet been determin-
ed. This is accomplis%ed by using an expansion based
upon the magnetic field between conductors at y=0 and
y=B:

I, = E An on )
2 - —_— ’
neo B cos kyn} (5)
with k n = EE3 and € is the Neumann factor. This

I, form is used in (Z?, and the coefficients A,
determined from the resulting E2 expression by impos-
ing the condition: y

b

at r=a, i.e. the tangential component of electric
field for each mode is zero at the perfectly-conducting
surface Sl’

E2y cos kyn y dy = 0 for n=0, 1, 2..(6)

From the form of the excitation, it is seen that the
H, field can be represented as the sum of a set of
radial-line TM modes (which may well have angular
dependence). From radial-line theory for TM modes:
r=b

b ik
[Hygy (£:9) dr = o—gor—r N
2 H2on RCIEEAE

n
r=a

where Z is the free-space wave impedance. Note that

E2yn=0 at r=a, in the waveguide of Fig. 1(c).

The admittance of the junction from the coaxial-line
terminals at the aperture is given by [5]:
fga (EO X Ho) .ay ds

(8)

V2

From the components of E; and ﬁg, we obtain:

. cot kB
!
Z
04

1
V 1n(b/a)
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Y = -

b
fa Hyp (r,®,y=0)drds

9

and the integral is readily evaluated using (7).

For the special case of small apertures an approxXimate
expression for Y can be derived. From expression of
the Maxwell equations in cylindrical co-ordimates, (9)
can be written as:

o g cot kB 12070
- Z v
c
jw € 2w b b _
T a5/ [; I rin(E,  (r,2,y=0) dr do (10)
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This equation can be evalvated by expanding Iy and E,
into Fourier components, as in (5). This expansion
shows that for small apertures the integral term in (10
has a negligible effect, due to ln(b/r) = 0 at r=b and
E,_ = 0 at r=a, and accurate results are obtained with
tﬁXs term neglected.

RESULTS

The analysis set out above is applicable to all guiding
structures having perfectly-conducting planes on upper
and lower surfaces. It is here applied to the special
case of the rectangular waveguide, for the purpose of
experimental verification using published measurements
[2]115]. The results are shown in Figs. 2-4, for
standard X-band and S-band waveguide, with coaxial line
of 500, 66Q ayd,24.5Q0 characteristic impedance with a
total of M = 5 — modes considered in the x direction
and a small pimber of modes in the y direction.

From (4) and (7), it is clear that the input impedance
values will depend on the value of ®at which the field
Hyy is evaluated. Calculations show that the current
I, varies with ®, to an extent proportional to the
ratio of the post diameter and the waveguide width;
thus, this variation is slight for thin posts.

Figs. 2 and 4 show good agreement between theory and
measurement for small and medium sized apertures,
using &= n/2, while Fig. 3 shows that for a large
aperture. Fig. 4 also shows that the approximate
formula in (10) gives good accuracy.

CONCLUSTONS

The theory developed here has been shown to give good
accuracy, through comparison with experimental
measurements. It will probably find its most signific-—
ant application in millimeter-wave circuit design, with
dielectric waveguides or H-guide structures.
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Y WAVEGUIDE COAXIAL LINE EXTENSION
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Fig. 1(a) Coaxial line-waveguide junction:
(b) Extended coaxial line structure used to find

one admittance component; (¢) current sources
compensating for Fig. 1(b) currents, so that (b)
and (c¢) combine to represent (a).
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Fig. 2 Comparison between theoretical and experimental

values of input impedance at the coaxial aperture

plane, for A=22.86mm, B=10.16mm, S=A/2, and with
a=1,55mm, b=3.55mm for 500 line.
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Fig. 3 As for Fig. 2, but with a=2.37mm, b=7.15mm,
for 66Q line.
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Fig. & As for Fig. 2, but with A=47.6mm, B=22.15mm.
S=A/2, and a=2.37mm, b=3,55mm, for 24.5{ line.



